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Introduction A of

* Chemical Reaction Engineering (CRE) examines the
principles governing reaction rates, mechanisms,
and reactor design.

* This lecture focuses on complex reactions, their
classification, and strategies for optimizing reactor
performance In various scenarios.
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Topics to be Addressed

* - Fundamentals of Complex Reactions

* - Types of Reactors: PFR, CSTR, Semibatch, and
Membrane Reactors

o - Selectivity and Yield Analysis
- Numerical Approaches for Reactor Optimization
* - Case Studies and Practical Applications
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Objectives -

By the end of this lecture, students will be able to:

» - Understand the characteristics and challenges of
complex reactions.

» - Apply mole balances, rate laws, and
stoichiometry to complex systems.

* - Evaluate reactor performance for different
configurations.

* - Develop strategies to enhance selectivity and
vield in complex reactions.
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Introduction

» Complex reactions involve multiple reactants and
oroducts, with intricate interdependencies.

* This session explores the theoretical concepts,
oractical applications, and numerical approaches
to analyze and optimize complex reaction
networks.
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* Complex Reactions: sl s

A+2B =2 C

A+3C—>D
* Example A: Liquid Phase PFR
 Example B: Liquid Phase CSTR
 Example C: Gas Phase PFR

* Example D: Gas Phase Membrane Reactors

Sweep Gas Concentration Essentially Zero
Sweep Gas Concentration Increases with Distance

* Example E: Semibatch Reactor
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Number all reactions

Mole balances:

Mole balance on each and every species

sl lf esiagyis

PFR ﬂ’ = 7 OUR WAY TC SUCCESS
Iz
CSTR Fo—F;=—rV
dN;
Batch dif; — er
. . . dF;
Membrane (“i” diffuses in) =r;+R;
dl”
dC; C.n—C.
Liquid-semibatch = Vo (o F2]
dt o [
Rates:
Laws ry=kyfi(C1C,)

Relative rates _ia_ B _ T iD

a
@ Net rates = 2 7

m Stoichiometry:
ey

mp CFais ol om0 e e et T e e

& phase i ?“-Fil" P T mf"-il" T"

Following the Algorithm P

Eiguiiad plraase =iy
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New things for multiple reactions =~ <%

1. Number Every Reaction
2 on every species

3. Rate Laws
(a) Net Rates of Reaction for every species

N
rA:ZriA

(b) Rate L'alvs for every reaction
A = _klACAcé

e =—k,cCaC2
2C _ 2C~A™C

(c) Relative Rates of Reaction for every reaction
For a given reaction i1 (i) a,A+b,B -¢,C+d,D:

in _ Tie _Tic _Tip

~a -b ¢ d
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Reactor Type Gas Phase Liquid Phase
N
Batch d A _ rAV dCA =T,
dt dt
Semibatch dN,, Y. dC, :rA_UOCA
dt A dt \Y;
dN dcC 0,[Cao —C
C“:B — rBV + FBO dtB =T, + o[ B\(} B]
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Mole Balance m @

Reactor Type  Gas Phase
CSTR v = Fro
PFR aF

dVv
dF,
PBR qw A

Note: The reaction rates in the above
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YOUR WAY TC SUCCESS

Liquid Phase

_rA

dC
%df:“
o dc, _
“dw 4

are net rates.



——., e

Batch Flow
J J
N =
CB :78 CB :78
V =V, N: B To L=, H BT
N, PT F. P T
NB NTO P TO FB FTO P TO
C, = C, -
N. V, P T F oo, P, T
N. PT FEPT
Co=Cro 7 T Co=Cror v 7
T 0 T 0
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Concentration of Gas: s}::l.:“‘
EF 0 2T, o

C,= CToeF ﬂpg

by = byt byt hctk,

Note: We could use the gas phase mole balances for liquids
and then just express the concentration as:

F
Flow: _
ow C,=-A
Uy
N
Batch: C,=—*%~
Vo
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Example A: Liquid Phase PFR

abul ] iy

YOUR WAY TC SUCCES!

The complex liquid phase reactions follow
elementary rate laws:

1) A+2B—>C -1, =k,C,Ci

NOTE: The specific reaction rate k,, is defined with respect
to species A.

(2) 3C+2A—>D -, =k, CC?

NOTE: The specific reaction rate k, is defined with respect
to species C.
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Example A: Liquid Phase PFR

Complex Reactions

<

alaal @] eags

YOUR WAY TC

(1) A+2B—->C
(2) A+3C—>D
i on each aamlgl every species
) —2=r 2) —2=r,
(L) VIR (2) v
dF dF
) —& = 4 D —¢
(3) v (4) YRR
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Example A: Liquid Phase PFR

2) Rate Laws:
Net Rates O)ry=r,+6h, (7)rg=rg+r1y;

6)rc =fc+he (B)rp=0+r,

abal o] esayha

YOUR WAY TC SUCCESS

Ratelaws  (9) r,, = —k,,C,C;
(10) e = —k,cCAC¢

r1A _ r‘1B _ r1C

Relative Rates 1 2 1
Reaction 1

(11) g = 2r1A

(12) rllC 1A
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Example A: Liquid Phase PFR

Relative Rates Loan _ T o

Reaction 2 -2 -3 1

2
(13) oa = g Pre

<

alaal @lf ezigybs

YOUR WAY TC SUCCESS

W) 1=
'y = _klACACEZ; - % kchng

r, =-2k,,C,C:
I = klACACB - kchng
kzc

r,=—2£C:C;
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Example A: Liquid Phase PFR

<

alaal @lf ezigybs

YOUR WAY T

3) Stoichiometry
Liquid
(15)Cy =F4/v,
(16) C5 = F3 /v,
(17)Ce = Fe /v,
(18)Cp = Fp /v,

(19) S, =if (V >0.00001)then [ij else 0

D
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Example A: Liquid Phase PFR

F; = Liquid — Not Needed
Others (19) & = Liquid — Not Needed
(20) C,, =Liquid — Not Needed

<

abal o] esayha

YOUR WAY TC SUCCESS

(21) klA =10

4) Parameters (22) K, =20
(23) a = Liquid
(24) C,, = Liquid
(25)V, =2500
(26) F,, = 200
(28) Fy, =200

(26) v, =100
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Example B: Liquid Phase CSTR

Same reactions, rate laws, and rate constants as
Example A

(1) A+2B—>C —la = klACAcé

NOTE: The specific reaction rate k1A is defined with
respect to species A.

(2) 3C+2A—>D -1, =k, CC?

abul ] iy

YOUR WAY TC SUCCES!

NOTE: The specific reaction rate k, is defined with respect
to species C.

COLLEGE OF ENGINEERING - dsssyml| 8414

b pa -



Example B: Liquid Phase CSTR

l

&1 log
“\W
am@u )E-

T

The complex liquid phase reactions take place

in a 2,500 dm?3 CSTR. The feed is equal mo
in A and B with F,,=200 mol/min, t
volumetric flow rate is 100 dm3/min and t
reaction volume is 50 dms.

Find the concentrations of A, B, C and

ar
ne

ne

D

existing in the reactor along with the existing

selectivity.

Plot F,, Fg, F¢, Fp and S5 as a function of V
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Example B: Liquid Phase CSTR

(1) A+ 2B >C (2) 2A+3C > D

<

alsal ell e

YOUR WAY TC SUCCESS

= _klACACEZ;
= _kzccicg

1) A V,C 0 —U,Cp+1,V =0

(2) B 0,Cpy —0,Cz + 15V =0

(3) C 0-v,C.+r.V =0

(4) D 0-v,Cp +1V =0
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Example B: Liquid Phase CSTR

2) Rate Laws: (5)-(14) same as PFR

<

alsal ell e

YOUR WAY TC SUCCESS

3) Stoichiometry: (15)-(18)
same as Liquid Phase PFR

Fe _ 0,Cc

19)S,.,, = =
(19) Sero F, +0.0001 o,C, +0.0001

4) Parameters:
Kias Kacr Caor Cgor Vi 04
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Example B: Liquid Phase CSTR

In terms of molar flow rates

(1)A+ 2B —-C (2) 2A+3C —- D
A = _klACACE23
foc = —kZCC/ng

abul ] iy

YOUR WAY TC SUCCES!

(1-4) 2) Rates (5-14) 3) Stoichiometry: (15-19)
@) f(F,)=F, —F,+rV (=0)

Same as (15) C,=F,/v,

(2) f (FB): FBO N FB T r|3V (=0) =empleA (16) Cg=Fy /UO

(17) Cc=F./v,

(3 f(Fe)=0-F +rV (=0) (18) Cp=Fy/v,
(f(Fo)=0-Fo+rV  (=0) 49 Sco =

“® " F_ +0.00001
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Example B: Liquid Phase CSTR

In terms of concentration

(1)A+ 2B —-C (2) 2A+3C —- D
A = _klACACE23
e = _kch/in:

alaal @11 sanm

YOUR WAY TC SUCCESS

(1-4) 2) Rates (5-14) 3) Stoichiometry: (15-19)
@f (CA) =0,Cpo —0,Ca+1V  (=0) Same as F.
Example A (19 8e0 = £ =76 00001
(2)f(Cs)=0,Cso —0,Ce +1V  (=0) b=

(3 f(Cc)=0-0,Cc+1V  (=0)

(4)f(Cp)=0—-0,Cp +1,V  (=0)
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No AP

abul ] iy

YOUR WAY T'C SUCCES

Same reactions, rate laws, and rate constants as
Example A:

() A+2B >C _r, =k, C,C?

NOTE: The specific reaction rate k,, is defined with respect to species A.

(2) 3C+2A—>D  —r_ =k, CC?

NOTE: The specific reaction rate k,. is defined with respect to species C.
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No AP

dF dF

O Gr=n @) geer
dF dF

@ SEen @) e

2) Rate Laws: (5)-(14) same as CSTR
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No AP i e
3) Stoichiometry:
Gas: Isothermal T=T,

F, F
(15)C, =Coyitp (16)C, = C, 22 p
T0 FT T0 FT
F F
1NC.=C,,—~ 18)C,=C,,—2
(17) C, TOFTp (18) C, TOFTp
Pack&PBEdWithtHret 4t Firop

d_p __a & F, 08 70 a F
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No AP g

4) Selectivity

Fe_,

S= f (Vv >0.00001)then (i] else(0) (20)

D D

p=1 (21)
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Example D: Membrane Reactor -

with AP

Same reactions, rate laws, and rate constants as
Example A:

1) A+2B—>C -1, =k,,C,C:

NOTE: The specific reaction rate k,, is defined with respect to
species A.

(2) 3C+2A—>D  —r_=k,CC’

NOTE: The specific reaction rate k,. is defined with respect to
species C.
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Example D: Membrane Reactor. %
with AP

abal @] sayks
Because the smallest molecule, and the one with the
lowest molecular weight, is the one diffusing out, we will
neglect the changes in the mass flow rate down the
reactor and will take as first approximation: m, = m

dF dF

A d\/A:rA (1) C d—\fer—RC (3)
dF, dF,

5 St @) D “2or, (4

We also need to account for the molar rate of desired
product C leaving in the sweep gas Fcgy  dF,
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Example D: Membrane Reactor. %

with AP

We need to reconsider our pressure drop equation.

When mass diffuses out of a membrane reactor there will be
a decrease in the superficial mass flow rate, G. To account for
this decrease when calculating our pressure drop parameter,
we will take the ratio of the superficial mass velocity at any
point in the reactor to the superficial mass velocity at the
entrance to the reactor.

G | YF-Mw
a=a,— =0a,
Go _ZFio'MWi_
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Example D: Membrane ﬁeactor E::":‘f‘

with AP o s
The superficial mass flow rates can be obtained by
multiplying the species molar flow rates, F;, by their

respective molecular weights, Mw, and then
summing over all species:

G _mA, D F-(MW)A Y F(MW)
Go mo/Acl ZFiO'(MWi )/Acl ZFiO(MWi)
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Example D: Membrane Reactor ‘g

with AP s s

2) Rate Laws: (5)-(14) same as Examples A, B, and C.

3) Stoichiometry: (15)-(20) same as Examples A and B
(T=Ty)

4) Sweep Gas Balance:

F

Csg

dF,

Csg

~F

vV Csg

+ R-.AV =0

V +AV

- C
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Semibatch

abul ] iy

YOUR WAY TC SUCCES!

Same reactions, rate laws, and rate constants as

Example A:

2
NOTE: The specific reaction rate k,, is defined with respect to
species A.

(2) 3C+2A—>D -1, =k, CC?

NOTE: The specific reaction rate k,. is defined with respect to
species C.
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Example E: Liquid Phase <

bl ] gl

The complex liguid phase reactions take place
in a where A is fed to B with
F.o= 3 mol/min. The volumetric flow rate is 10
dm3/min and the initial reactor volume is 1,000
dm3.

The maximum volume is 2,000 dm? and C,,=0.3
mol/dm3 and C;,=0.2 mol/dm3. Plot C,, C;, C¢, G
and S as a function of time.
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Semibatch
(1) A + 2B >C (2)2A+3C=>D

SO
dNA S~——
=r\V +F N =0
T A A0 Q/
dNg _ LV Ny, =Cy,V, = 2.000
dt
d(lj\![c =r.V Neo =0
aN, =rV Npo =0
dt
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2) Rate Laws: (5)-(14)
Net Rate, Rate Laws and relative rate — are the same
as Liquid and Gas Phase PFR and Liquid Phase CSTR
V =V, +vt (15)

abul ] iy

YOUR WAY TC SUCCES!

N N
co=M g e, =N )

N N
cczvc (18) CDsz (19)

3) Selectivity and Parameters:

S.,p =Iif (t >0.0001) then ( EC jelse(O) (20)

D
L, =10dm?*/min v/ =100dm® Fa, =3mol/min
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abal o] esayha

YOUR WAY TC SUCCESS
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Summary

In this lecture, we covered:

- The principles and analysis of complex reactions.

- Key reactor types: PFR, CSTR, semibatch, and
membrane reactors.

- Selectivity and yield optimization strategies.

- Pr&lactjcal examples and numerical methods for reactor
analysis.

« Complex reactions are essential for advancing chemical
porocess efficiency and innovation.
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